北京市为治理交通拥堵状况,鼓励市民乘坐公交车出行,从4月1日开始,北京市三环内的停车费第一小时为10元,比原先的每小时2元上涨8元,此后每小时15元,比之前上涨13元.设在这样的停车场停车x小时,需付费y元.(假定每辆车的停车时间均是整数小时).分别写出4月1日前和4月1日后y与x间的函数关系式.
已知一元二次方程k+(2k-1)x+k+2=0有两个不相等的实数根,求k的取值范围.
解方程:+3x-4=0
某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为
已知,矩形中,
,
,
的垂直平分线
分别交
、
于点
、
,垂足为
.
(1)如图26-1,连接、
.求证四边形
为菱形,并求
的长;
(2)如图26-2,动点、
分别从
、
两点同时出发,沿
和
各边匀速运动一周.即点
自
→
→
→
停止,点
自
→
→
→
停止.在运动过程中.
①已知点的速度为每秒10
,点
的速度为每秒6
,运动时间为
秒,当
、
、
、
四点为顶点的四边形是平行四边形时,求
的值.
②若点、
的运动路程分别为
、
(单位:
,
),已知
、
、
、
四点为顶点的四边形是平行四边形,求
与
满足的函数关系式.
在平面直角坐标系中,一次函数
的图象与y轴交于点A,与x轴交于点B,与反比例函数
的图象分别交于点M、N,已知△AOB的面积为3,点M的纵坐标为4.
(1)求一次函数与反比例函数的解析式;
(2)求点N的坐标并直接写出当y1>y2时,的取值范围.