如图,在平面直角坐标系中,点A、B分别在x轴y轴的正半轴上,线段OA的长是不等式5x﹣4<3(x+2)的最大整数解,线段OB的长是一元二次方程x2﹣2x﹣3=0的一个根,将Rt△ABO沿BE折叠,使AB边落在OB边所在的y轴上,点A与点D重合.
(1)求OA、OB的长;
(2)求直线BE的解析式;
(3)在平面内是否存在点M,使B、O、E、M为顶点的四边形为平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费。下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:
(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)
已知小王家2012年4月用水20吨,交水费66元,5月份用水25吨,交水费91元。
(1)求a,b的值;
(2)随着夏天的到来,用水量将增加。为了节省开支。小王计划把6月份的水费控制在不超过家庭月收入的2%,若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?
如图,中,
是它的角平分线,
,
在
边上,
为直径的半圆
经过点
,交
于点
。
(1)求证:是
的切线;
(2)已知,
的半径为4,求图中阴影部分的面积。
某学校要求成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔,每位女生的升高统计如下图,部分统计量如下表:
(1)求甲队身高的中位数;
(2)求乙队身高的平均数及身高不小于1.70米的频率;
(3)如果选拔的标准是身高越整齐越好,那么甲、乙两队中那一队将被录取?请说明理由。
如图,已知一次函数与反比例函数的图像交于点和
(1)求反比例函数的解析式和点的坐标;
(2)根据图像回答,当在什么范围内时,一次函数的值大于反比例函数的值?
用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2013颗黑色棋子?请说明理由。