李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)
周一 |
周二 |
三 |
四 |
五 |
六 |
日 |
+15 |
+10 |
0 |
+20 |
+15 |
+10 |
+14 |
-8 |
-12 |
-19 |
-10 |
-9 |
-11 |
-8 |
(1)到这个周末,李强有多少节余?
(2)照这样,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
已知抛物线的表达式为
(1)若抛物线与轴有交点,求
的取值范围;
(2)设抛物线与轴两个交点的横坐标分别为
、
,若
,求
的值;
(3)若P、Q是抛物线上位于第一象限的不同两点,PA、QB都垂直于轴,垂足分别为A、B,且△OPA与△OQB全等,求证:
已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q,
(1)当点P,运动到Q、C两点重合时(如图1),求AP的长。
(2)点运动过程中,有几个位置(几种情况)使△CQD的面积为?( 直接写出答案)
(3)当使△CQD的面积为,且Q位于以CD为直径的的上半圆上,CQ>QD时(如图2),求AP的长。
P表示边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与
的关系式是:
(其中,
是常数,
)
(1)填空:通过画图可得:四边形时,P=(填数字),五边形时,,P=(填数字)
(2)请根据四边形和五边形对角线交点的个数,结合关系式,求的值
(注:本题的多边形均指凸多边形)
某学校举行一次体育测试,从所有参加测试的学生中随机抽取10名学生的成绩,制作出如下统计表和条形统计图:
编号 |
成绩 |
等级 |
编号 |
成绩 |
等级 |
95 |
A |
⑥ |
76 |
B |
|
78 |
B |
⑦ |
85 |
A |
|
72 |
C |
⑧ |
82 |
B |
|
79 |
B |
⑨ |
77 |
B |
|
92 |
A |
⑩ |
69 |
C |
请回答下列问题:
(1)孔明同学这次测试的成绩是87分,则他的成绩等级是;
(2)请将条形统计图补充完整;
(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少?
为了举行班级晚会,孔明准备去商店购买20乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?