已知抛物线y=ax2+bx+c经过A(3,0)、B(0,3)、C(1,0)三点.
(1)求抛物线的解析式;
(2)若点D的坐标为(﹣1,0),在直线AB上有一点P,使△ABO与△ADP相似,求出点P的坐标;
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.
解不等式组,并把解集在数轴上表示.
先化简,再求值其
如图,Rt△AOC中,∠ACO=90°,∠AOC=30°.将Rt△AOC绕OC中点E按顺时针方向旋转180°后得到Rt△BCO,BO、CO恰好分别在y轴、x轴上.再将Rt△BCO沿y轴对折得到Rt△BDO.取BC中点F,连接DF,交AB于点G,将△BDG沿DF对折得到△KDG.直线DK交AB于点H.填空:CE:ED=________,AB:AC=__________;
若BH=
,求直线BD解析式
在(2)的条件下,一抛物线过点D、点E、点B,此抛物线位于直线BD上方有一动点Q,△BDQ的面积有无最大值?若有,请求出点Q的坐标;若无,请说明理由
如图,AB、ED是⊙O的直径,点C在ED延长线上, 且∠CBD =∠FAB.点F在⊙O上,且 AB⊥DF.连接AD并延长交BC于点G.求证:BC是⊙O的切线;
求证:BD·BC=BE·CD;
若⊙O 的半径为r,BC=3r,求tan∠CDG的值