游客
题文

如图,Rt△AOC中,∠ACO=90°,∠AOC=30°.将Rt△AOC绕OC中点E按顺时针方向旋转180°后得到Rt△BCO,BO、CO恰好分别在y轴、x轴上.再将Rt△BCO沿y轴对折得到Rt△BDO.取BC中点F,连接DF,交AB于点G,将△BDG沿DF对折得到△KDG.直线DK交AB于点H.

填空:CE:ED=________,AB:AC=__________;
若BH=,求直线BD解析式
在(2)的条件下,一抛物线过点D、点E、点B,此抛物线位于直线BD上方有一动点Q,△BDQ的面积有无最大值?若有,请求出点Q的坐标;若无,请说明理由

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对 雾霾了解程度的统计表:

对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n


请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有  人,m=  ,n=  
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度;
(3)请补全条形统计图;

已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,我们可得结论:AB+AD=AC;

在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

【解】
(2)在图3中:(只要填空,不需要证明).

①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示)。

交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.

(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A到B用时为2秒,这辆汽车是否超速?说明理由.

已知关于x的一元二次方程
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。

如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号