某通讯公司就手机流量套餐推出三种方案,如下表:
方案 |
方案 |
方案 |
|
每月基本费用(元 |
20 |
56 |
266 |
每月免费使用流量(兆 |
1024 |
|
无限 |
超出后每兆收费(元 |
|
|
, , 三种方案每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系如图所示.
(1)请写出 , 的值.
(2)在 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系式.
(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 方案最划算?
如图1,在直角坐标系中,点A的坐标为(1,0),以OA为一边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1,且OD≠2),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形 ;
(2)试说明(1)中找出的损矩形一定有外接圆;
(3)随着点D的位置变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由.
(4)在图2中,过点M作MG⊥y轴,垂足是点G,连结DN,若四边形DMGN为损矩形,求点D的坐标.
浠水某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.
先阅读短文,然后回答短文后面所给出的问题:
对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定表示这三个数的平均数,
表示这三个数中的最小的数,
表示这三个数中最大的数.例如:
,
,
;
,
.
(1)请填空: ;若
,则
;
(2)若,求
的取值范围;
(3)若,求
的值.
某地因持续高温干旱,村民饮水困难,镇政府组织村民组成水源行动小组到村镇周边找水。某村民在山洞里发现了暗河(如图所示),经勘察,在山洞的西面有一条南北走向的公路连接着
两村庄,山洞
位于
村庄南偏东
方向,且位于
村庄南偏东
方向。为方便
两村庄的村民取水,准备从山洞
处向公路
紧急修建一条最近的简易公路
,现已知
两村庄相距6千米。
(1)求这条最近的简易公路的长(精确到0.1千米)?
(2)现由甲、乙两施工队共同合作修建这条公路,已知甲施工队修建2千米后,由乙施工队继续修建,乙施工队每天施工的速度是甲施工队每天施工速度的1.6倍,8天后,公路正式通车。求甲、乙两施工队每天修建公路多少千米?
(参考数据:,
)
为了了解初三学生参加体育活动的情况,某校对部分初三学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:
A.1.5小时以上 | B.1—1.5小时 |
C.0.5—1小时 | D.0.5小时以下 |
根据调查结果绘制了两幅不完整的统计图如下:
请你根据以上信息解答下列问题:
(1)本次调查的学生人数为 人,图(2)中选项C的圆心角度数为 度,请补全条形统计图。
(2)选择D选项的人中有2人来自一班,2人来自二班,学校准备从这4人中任选两人参加学校组织的师生趣味运动会,请你用列表法或画树状图的方法,求出所选的两人均来自同一个班的概率.