(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人
(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数;
(Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为
,求
名毕业生中男女各几人(男女人数均至少两人)?
(Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求
的分布列和数学期望.
设数列的前
项积为
,且
.
(Ⅰ)求证数列是等差数列;
(Ⅱ)设,求数列
的前
项和
.
如图,在四棱锥P-ABCD中,底面是边长为2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=
,M,N分别为PB,PD的中点.
(1)证明:MN∥平面ABCD;
(2) 过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.
“中国式过马路”存在很大的交通安全隐患.某调
查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路
人进行了问卷调查,得到了如下列联表:
男性 |
女性 |
合计 |
|
反感 |
10 |
||
不反感 |
8 |
||
合计 |
30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
已知,
,且
.
(1)将表示为
的函数
,并求
的单调增区间;
(2)已知分别为
的三个内角
对应的边长,若
,且
,
,求
的面积.
某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为