已知数列{}中,
,且
对任意正整数都成立,数列{
}的前n项和为Sn。
(1)若,且
,求a;
(2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项
按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由;
(3)若。
(本小题满分12分)已知等差数列的公差大于0,且
是方程
的两根,数列
的前n项的和为
,且
.
(1)求数列,
的通项公式;
(2) 记,求证:
.
(本小题满分12分)设函数f(x)=2在
处取最小值.
(1)求的值;
(2)在中,
分别是角A,B,C的对边,已知
,求角C.
已知圆:
.
⑴直线过点
,且与圆
交于
、
两点,若
,求直线
的方程;
⑵过圆上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
,求动点
的轨迹方程,并说明此轨迹是什么曲线.
如图1,在直角梯形中,
,
,
,
,
分别是
的中点,现将
沿
折起,使平面
平面
(如图2),且所得到的四棱锥
的正视图、侧视图、俯视图的面积总和为8.
⑴求点到平面
的距离;
⑵求二面角的大小的夹角的余弦值;
⑶在线段上确定一点
,使
平面
,并给出证明过程.
设命题:函数
在
上单调递增;命题
:不等式
对任意的
恒成立.若“
且
”为假,“
或
”为真,求
的取值范围.