(本小题满分14分)已知为数列
的前
项和,
(
),且
.
(1)求的值;
(2)求数列的前
项和
;
(3)设数列满足
,求证:
.
设函数,其中
。
(Ⅰ)当时,求不等式
的解集;
(Ⅱ)若不等式的解集为
,求a的值。
对,记
,函数
(1)求,
;
(2)作出的图像;
(3)若关于的方程
有且仅有两个不等的解,求实数
的取值范围.
.已知,
(1)求证:,并指出等号成立的条件;
(2)利用此不等式求函数的最小值,并求出等号成立时的
值.
.解关于的不等式
。
.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将y表示为x的函数
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,求出最小总费用。