(本小题满分12分)在平面直角坐标系中,已知椭圆
:
的离心率
,直线
过椭圆
的右焦点
,且交椭圆
于
,
两点.
(1)求椭圆的标准方程;
(2)已知点,连结
,过点
作垂直于
轴的直线
,设直线
与直线
交于点
,试探索当
变化时,是否存在一条定直线
,使得点
恒在直线
上?若存在,请求出直线
的方程;若不存在,请说明理由.
选修;坐标系与参数方程
在直角坐标系中,直线
的参数方程为
(
为参数),若以原点
为极点,
轴正半轴为极轴建立极坐标系,已知圆
的极坐标方程为
,设
是圆
上任一点,连结
并延长到
,使
.
(Ⅰ)求点轨迹的直角坐标方程;
(Ⅱ)若直线与点
轨迹相交于
两点,点
的直角坐标为
,求
的值.
选修:几何证明选讲
如图,圆内接四边形的边
与
的延长线交于点
,点
在
的延长线上.
(Ⅰ)若,求
的值;
(Ⅱ)若,证明:
.
已知函数(
).
(Ⅰ)讨论的单调性;
(Ⅱ)若对任意
恒成立,求实数
的取值范围(
为自然常数);
(Ⅲ)求证:(
,
).
已知直线与椭圆
相交于
两点.
(Ⅰ)若椭圆的离心率为,焦距为2,求线段
的长;
(Ⅱ)若向量与向量
互相垂直(其中
为坐标原点),当椭圆的离心率
时,求椭圆的长轴长的最大值.
如图,已知矩形所在平面垂直于直角梯形
所在平面于直线
,且
,
且
∥
.
(Ⅰ)设点为棱
中点,求证:
平面
;
(Ⅱ)线段上是否存在一点
,使得直线
与平面
所成角的正弦值等于
?若存在,试确定点
的位置;若不存在,请说明理由.