(本小题满分12分)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人, 他们的健康状况如下表:
健康指数 |
2 |
1 |
0 |
-1 |
60岁至79岁的人数 |
120 |
133 |
34 |
13 |
80岁及以上的人数 |
9 |
18 |
14 |
9 |
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”。
(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?
(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.
设函数的最大值为
,最小正周期为
.
(Ⅰ)求、
;
(Ⅱ)若有10个互不相等的正数满足
求
的值.
不等式选讲
已知均为正实数,且
.求
的最大值.
坐标系与参数方程
已知直线的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线
上求一点,使它到直线
的距离最小,并求出该点坐标和最小距离.
几何证明选讲
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.
求证:(1);
(2)AB2=BE•BD-AE•AC.
已知函数(
),其中
.
(1)当时,讨论函数
的单调性;
(2)若函数仅在
处有极值,求
的取值范围;
(3)若对于任意的,不等式
在
上恒成立,求
的取值范围.