游客
题文

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:

(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的
人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场
的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要
负责人,记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及
数学期望.

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本小题满分12分)
设椭圆C=1(ab>0)的左焦点为F,过点F的直线与椭圆C相交于AB两点,直线l的倾斜角为60°,AF=2FB.
(I)求椭圆C的离心率;
(II)如果|AB|=,求椭圆C的方程.

(本小题满分12分)
已知函数f(x)=x2(x-3a)+1(a>0,x∈R).
(I)求函数yf(x)的极值;
(II)函数yf(x)在(0,2)上单调递减,求实数a的取值范围;
(III)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.

(本小题满分12分)
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为pqpq),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为

ξ
0
1
2
3
p

a
b


(I)求该生至少有1门课程取得优秀成绩的概率;
(II)求pq的值;
(III)求数学期望.

(本小题满分12分)
如图,已知三棱锥PABC中,PA⊥平面ABC
ABACPAACABNAB上一点,
AB=4ANMS分别为PBBC的中点.
(I)证明:CMSN
(II)求SN与平面CMN所成角的大小.

(本小题满分12分)
已知m=(cosωx+sinωxcosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=m·n,且f(x)的对称中心到f(x)的对称轴的最近距离不小于.
(I)求ω的取值范围;
(II)在△ABC中,abc分别是内角ABC的对边,且a=1,bc=2,当ω取最大值时,f(A)=1,求△ABC的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号