游客
题文

(本小题满分14分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,PC=AB=2AD=2CD=2,E是PB的中点.

(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直线PA与平面EAC所成角的正弦值.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

如图,四棱锥中,底面为平行四边形,⊥底面.
(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值。

如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.

设函数abcd∈R)图象C关于原点对称,且x=1时,取极小值
(1)求f(x)的解析式;
(2)当时,求函数f(x)的最大值

已知
(1)求
(2).

已知函数,若=1处的切线方程为
(1) 求的解析式及单调区间;
(2) 若对任意的都有成立,求函数的最值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号