游客
题文

(本题12分)已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程的解,点C的纵坐标恰好是方程的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.

1)求直线BC的解析式;
2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?
3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.

科目 数学   题型 解答题   难度 较难
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

解不等式组

如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=于点D,过D作两坐标轴的垂线DC、DE,连接OD.

(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证AD·BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.

如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.

(1)FG与DC的位置关系是 ,FG与DC的数量关系是
(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.

为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.

(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?

如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.

(1)判断四边形ADEF的形状,并证明你的结论;
(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号