游客
题文

在一个口袋中有四个完全相同的小球,把它们分别标号为1,2, 3,4.小明和小强采取了不同的摸取方法,分别是:
小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;
小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号.
用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;
分别求出小明和小强两次摸球的标号之和等于5的概率.

科目 数学   题型 解答题   难度 较易
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

在平面直角坐标系中,已知三个顶点的坐标分别为

(1)画出,并求出所在直线的解析式。
(2)画出绕点顺时针旋转后得到的,并求出在上述旋转过程中扫过的面积。

如图,是平行四边形的对角线上的点,,请你猜想:线段与线段有怎样的关系?并对你的猜想加以证明。

我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。

(1)根据上面的规律,写出的展开式。
(2)利用上面的规律计算:

计算:

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号