游客
题文

如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.

(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长及H点的坐标;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.

(1)当AB=AC时,(如图1),
①∠EBF=°
②探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图2),求的值(用含k的式子表示).

某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价(元/台)与采购数量(台)满足为整数);冰箱的采购单价(元/台)与采购数量(台)满足为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

已知关于的一元二次方程,其中分别为△ABC三边的长.
(1)如果是方程的根,试判断△ABC的形状,并说明理由:
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.

如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.

(1)求证:AC2=AB·AD;
(2)求证:CE∥AD;
(3)若AD=4, AB=6,求的值.

如图,已知二次函数的图象经过原点0(0,0),A(2,0).

(1)写出该函数图象的对称轴;
(2)若将线段OA绕点O逆时针旋转60°到OA',试判断点A'是否在该函数图象上?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号