已知关于的一元二次方程
,其中
、
、
分别为△ABC三边的长.
(1)如果是方程的根,试判断△ABC的形状,并说明理由:
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是" .书画类、 .文艺类、 .社会实践类、 .体育类".现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:
(1)本次被抽查的学生共有 名,扇形统计图中" .书画类"所占扇形的圆心角的度数为 度;
(2)请你将条形统计图补全;
(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择" .社会实践类"的学生共有多少名?
(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.
先化简,再求值: ,然后从 ,0,1中选择适当的数代入求值.
如图1,平面直角坐标系 中,等腰 的底边 在 轴上, ,顶点 在 的正半轴上, ,一动点 从 出发,以每秒1个单位的速度沿 向左运动,到达 的中点停止.另一动点 从点 出发,以相同的速度沿 向左运动,到达点 停止.已知点 、 同时出发,以 为边作正方形 ,使正方形 和 在 的同侧,设运动的时间为 秒 .
(1)当点 落在 边上时,求 的值;
(2)设正方形 与 重叠面积为 ,请问是否存在 值,使得 ?若存在,求出 值;若不存在,请说明理由;
(3)如图2,取 的中点 ,连结 ,当点 、 开始运动时,点 从点 出发,以每秒 个单位的速度沿 运动,到达点 停止运动.请问在点 的整个运动过程中,点 可能在正方形 内(含边界)吗?如果可能,求出点 在正方形 内(含边界)的时长;若不可能,请说明理由.
在平面直角坐标系 中,关于 的二次函数 的图象过点 , .
(1)求这个二次函数的表达式;
(2)求当 时, 的最大值与最小值的差;
(3)一次函数 的图象与二次函数 的图象交点的横坐标分别是 和 ,且 ,求 的取值范围.
如图,在 中, , 平分 交 于点 ,过点 和点 的圆,圆心 在线段 上, 交 于点 ,交 于点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 , ,求 的长.