游客
题文

一台汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求汽车原来的速度.

科目 数学   题型 解答题   难度 中等
知识点: 分式函数的最值
登录免费查看答案和解析
相关试题

(本题14分)如图①,直线分别与轴、轴交于A、B两点,与直线交于点

(1)求A、B两点坐标及的值;
(2)如图②,在线段BC上有一点E,过点E作轴的平行线交直线于点F,过E、F分别作EH⊥轴,FG⊥轴,垂足分别为H、G,设点E的横坐标为,当为何值时,矩形EFGH的面积为

(3)若点P为轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.

(本题10分)已知如图:点(1,3)在函数(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数(x>0)的图象又经过A、E两点,点E的横坐标为m.

(1)求k的值;
(2)求点A的坐标;(用含m代数式表示)
(3)当∠ABD=45°时,求m的值.

(本题10分)某超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价(售价不能超过进价的160%)应定为多少?这时应进货多少个?

(本题10分)阅读材料:分解因式:
解:
=
=
=
=
=
此种方法抓住了二次项和一次项的特点,然后加一项,使三项成为完全平方式,我们把这种分解因式的方法叫配方法.
(1)用上述方法分解因式:
(2)无论取何值,代数式总有一个最小值,请尝试用配方法求出当取何值时代数式的值最小,并求出这个最小值.

(本题10分)在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.

(1)求证:△ADE≌△CBF;
(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号