(本小题满分14分)如图1,在边长为的正方形
中,
,且
,且
,
分别交
于点
,将该正方形沿
折叠,使得
与
重合,构成图
所示的三棱柱
,在图
中.
(Ⅰ)求证:;
(Ⅱ)求直线与平面
所成角的正弦值;
(Ⅲ)在底边上有一点
,使得
平面
,求
的值.
已知函数:
(1)讨论函数的单调性;
(2)若函数的图像在点
处的切线的倾斜角为
,问:
在什么范围取值时,函数
在区间
上总存在极值?
(3)求证:.
某地区预计明年从年初开始的前个月内,对某种商品的需求总量
(万件)与月份
的近似关系为
.
(1)写出明年第个月的需求量
(万件)与月份
的函数关系式,并求出哪个月份的需求量超过1.4万件;
(2)如果将该商品每月都投放市场p万件,要保持每月都满足市场需求,则p至少为多少万件
设函数.
(1)求函数的最小正周期及其在区间
上的值域;
(2)记的内角A,B,C的对边分别为
,若
且
,求角B的值.
已知等差数列是递增数列,且满足
(1)求数列的通项公式;
(2)令,求数列
的前
项和
如图,在四棱锥中,底面
是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.