如图,在三棱锥中,
平面
,
,
,
、
、
分别为
、
、
的中点,
、
分别为线段
、
上的动点,且有
.
(1)求证:面
;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
.设函数
(Ⅰ)当曲线
处的切线斜率
(Ⅱ)求函数的单调区间与极值;
(Ⅲ)已知函数有三个互不相同的零点0,
,且
。若对任意的
,
恒成立,求m的取值范围。
.已知两定点,动点
满足
。
(1)求动点的轨迹方程;
(2)设点的轨迹为曲线
,试求出双曲线
的渐近线与曲线
的交点坐标。
已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值。
已知函数f(x)=4x3+ax2+bx+5在x=-1与x=处有极值。
(1)写出函数的解析式;
(2)求出函数的单调区间;
(3)求f(x)在[-1,2]上的最值。
.设函数y=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4,(1)求a、b、c的值;(2)求函数的递减区间.