(本小题满分15分)已知数列是首项为的等差数列,其前项和满足.数列是以为首项的等比数列,且.(Ⅰ)求数列,的通项公式;(Ⅱ)设数列的前项和为,若对任意不等式恒成立,求的取值范围.
设,函数,. (Ⅰ)当时,比较与的大小; (Ⅱ)若存在实数,使函数的图象总在函数的图象的上方,求的取值集合.
过轴上动点引抛物线的两条切线、,、为切点,设切线、的斜率分别为和. (Ⅰ)求证:; (Ⅱ)求证:直线恒过定点,并求出此定点坐标;
已知数列满足:,数列满足:,,数列的前项和为. (Ⅰ)求证:数列为等比数列; (Ⅱ)求证:数列为递增数列; (Ⅲ)若当且仅当时,取得最小值,求的取值范围.
如图,已知中,,平面,是的中点. (Ⅰ)若是的中点,求证:平面平面; (Ⅱ)若,求平面与平面所成的锐二面角的大小.
已知函数. (Ⅰ)求函数在上的最小值; (Ⅱ)若存在使不等式成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号