已知函数.
(1)求函数的极值;
(2)当时,求
的最值.
(本小题满分12分)已知抛物线的焦点为
,过点
作一条直线
与抛物线交于
,
两点.
(Ⅰ)求以点为圆心,且与直线
相切的圆的方程;
(Ⅱ)从中取出三个量,使其构成等比数列,并予以证明.
(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
接受挑战 |
不接受挑战 |
合计 |
|
男性 |
45 |
15 |
60 |
女性 |
25 |
15 |
40 |
合计 |
70 |
30 |
100 |
根据表中数据,能否在犯错误的概率不超过的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
(本小题满分12分) 已知数列是递增的等差数列,
,
是方程
的两根.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前
项和
.
(本小题满分14分)已知函数,其中
是自然对数的底数.
(Ⅰ)判断函数在
内的零点的个数,并说明理由;
(Ⅱ),使得不等式
成立,试求实数
的取值范围;
(Ⅲ)若,求证:
.
(本小题满分12分)已知抛物线的顶点为坐标原点,焦点为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点为抛物线
的准线上的任意一点,过点
作抛物线
的切线
与
,切点分别为
,求证:直线
恒过某一定点;
(Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分).