游客
题文

(本小题满分12分)已知椭圆,点在椭圆上,且构成等差数列,右焦点到直线的距离为
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆右焦点斜率为的直线与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线于点M,N,线段MN的中点为P,记直线的斜率为,求证:为定值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

在平面直角坐标系中,设点,坐标原点在以线段为直径的圆上
(Ⅰ)求动点的轨迹C的方程;
(Ⅱ)过点的直线与轨迹C交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.

某校为了解高一年级学生身高情况,按10%的比例对全校700名高一学生按性别进行抽样检查,测得身高频数分布表如下:
表1:男生身高频数分布表

身高(cm)
[160,165)
[165,170)
[170,175)
[175,180)
[180,185)
[185,190)
频数
2
5
13
13
5
2

表2:女生身高频数分布表

身高(cm)
[150,155)
[155,160)
[160,165)
[165,170)
[170,175)
[175,180)
频数
1
8
12
5
3
1

(Ⅰ)求该校高一男生的人数;
(Ⅱ)估计该校高一学生身高(单位:cm)在[165,180)的概率;
(Ⅲ)在男生样本中,从身高(单位:cm)在[180,190)的男生中任选3人,设ξ表示所选3人中身高(单位:cm)在[180,185)的人数,求ξ的分布列和数学期望.

ξ
1
2
3




如图,四棱锥P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°.

(Ⅰ)设PD的中点为M,求证:AM平面PBC;
(Ⅱ)求PA与平面PBC所成角的正切值.

已知数列{}的前n项和
(Ⅰ) 求数列{}的通项公式;(Ⅱ) 设,求数列的前.

已知函数的图象如图所示.
(1)求函数的解析式;
(2)设,且方程有两个不同的实数根,求实数的取值范围和这两个根的和;
(3)在锐角中,若,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号