(本小题满分12分)某校在一次对是否喜欢英语学科的学生的抽样调查中,随机抽取了100名同学,相关的数据如下表所示:
|
不喜欢英语 |
喜欢英语 |
总计 |
男生 |
40 |
18 |
58 |
女生 |
15 |
27 |
42 |
总计 |
55 |
45 |
100 |
(Ⅰ)试运用独立性检验的思想方法分析:是否有99 %的把握认为“学生是否喜欢英语与性别有关?”说明理由.
(Ⅱ)用分层抽样方法在喜欢英语学科的学生中随机抽取5名,女学生应该抽取几名?
(Ⅲ)在上述抽取的5名学生中任取2名,求恰有1名学生为男性的概率.
附:=
,
![]() |
0.100 |
0.050 |
0.025 |
0.01 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
(本小题满分12分) 若函数的图象与直线
相切,相邻切点之
间的距离为。
(Ⅰ)求和
的值;
(Ⅱ)若点是
图象的对称中心,且
,求点
的坐标。
(13分)一个同心圆形花坛,分为两部分,中间小圆部分种植绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.
⑴ 如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?
如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法?
⑵ 如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?
(12分) 已知数列(n为正整数)是首项是a1,公比为q的等比数列.
(1)求和:,
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
(13分) 已知的展开式中前三项的系数成等差数列.
(1)求n的值;
(2)求展开式中系数最大的项.
(12分) 由0,1,2,3,4,5这六个数字。
(1)能组成多少个无重复数字的四位数?
(2)能组成多少个无重复数字的四位偶数?
(3)能组成多少个无重复数字且被25个整除的四位数?
(4)组成无重复数字的四位数中比4032大的数有多少个?