(本题12分)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:
(1)该工厂有哪几种生产方案?
(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?
(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为(▼)
A.![]() |
B.1 | C.![]() |
D.2 |
(2)对于,∠A的正对值sad A的取值范围是▼ .
(3)已知,其中
为锐角,试求sad
的值.
如图,在△ABC中,∠ACB=,D是AB延长线上一点,且BD=BC,CE⊥CD交AB于E.
(1)求证:△ACE∽△ADC;
(2)若BE∶EA=3∶2,求sin∠A的值.
如图,梯形ABCD中,AB‖CD,且AB∶CD=4∶3,E是CD的中点,AC与BE交于点F.
(1)求的值;
(2)若,请用
来表示
已知二次函数的图像经过点
与
.
(1)求此函数的解析式;
(2)用配方法求此函数图像的顶点坐标.
如图,在△ABC中,BC=9,AB,∠ABC=
.
(1)求△ABC的面积;
(2)求cos∠C的值.