(本题8分)如图,一次函数 y="kx+b" 的图象与反比例函数y=的图象交于 A(﹣2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积.
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
如图所示,在平面直角坐标系中,一次函数y=kx+1,的图象与反比例函数的图象在第一象限相交于点A,过点A分别作x 轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.
已知二次函数当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.
与
成反比例,当
=2时,
=-1,求函数解析式和自变量
的取值范围。
如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),A点坐标为(-1,0)OB=OC ,
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
图1图2