某学校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段,
, ,
后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
△ABC中,a,b,c分别是角A,B,C的对边,,且
,
(Ⅰ)求△ABC的面积;(Ⅱ)若a=7,求角∠C
已知函数,
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根
,请求出一个长度为
的区间
,使
;如果没有,请说明理由?(注:区间
的长度
).
已知两直线,求分别满足下列条件的
、
的值.
(1)直线过点
,并且直线
与直线
垂直;
(2)直线与直线
平行,并且坐标原点到
、
的距离相等.
已知甲、乙两个工厂在今年的1月份的利润都是6万元,且甲厂在2月份的利润是14万元,乙厂在2月份的利润是8万元。若甲、乙两个工厂的利润(万元)与月份之间的函数关系式分别符合下列函数模型:
,
,
.
(1)求甲、乙两个工厂今年5月份的利润;
(2)在同一直角坐标系下画出函数与
的草图,并根据草图比较今年甲、乙两个工厂的利润的大小情况.
已知中
,
面
,
,求证:
面
.