(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)如图一,是正三角形,
是等腰直角三角形,
.将
沿
折起,使得
, 如图二,
为
的中点
(Ⅰ)求证:;
(Ⅱ)求的面积;
(Ⅲ)求三棱锥的体积.
(本小题满分12分)
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1.
(1)试求常数a、b、c的值;
(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由。
圆柱形容器,其底面直径为2m,深度为1 m,盛满液体后以0.01m3/s的速率放出,求液面高度的变化率.
已知函数,求
的单调区间。
(本小题12分)
如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。
|
(1)证明:AB1⊥BC1;
(2)求点B到平面AB1C1的距离;(本小题12分)
已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.
(1)求椭圆的标准方程.
(2)斜率为1的直线与椭圆交于A、B两点,O为原点,当△AOB的面积最大时,求直线
的方程.