本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.
已知两动圆和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线的方程;
(2)证明直线恒经过一定点,并求此定点的坐标;
(3)求面积
的最大值.
已知函数,函数
.
(1)求函数与
的解析式,并求出
的定义域;
(2)设,试求函数
的最值.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中
是仪器的月产量).
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)
已知函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1) 的定义域为B.
(1)求A;
(2)若BA, 求实数a的取值范围.
计算:
(1)
(2)已知,计算:
.
选修4—5:不等式选讲
已知实数满足
,且
.
(Ⅰ)证明:;
(Ⅱ)证明:.