本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知数列
中,
,
,
的前
项和为
,且满足
(
).
(1)试求数列
的通项公式;
(2)令
,
是数列
的前
项和,证明:
;
(3)证明:对任意给定的
,均存在
,使得当
时,(2)中的
恒成立.
给定两个命题,P:对任意实数x都有
x2+
x+1>0恒成立;Q:关于x的方程x2-x+
=0有实数根.如果P∨Q为真命题,P∧Q为假命题,求实数
的取值范围.
已知函数
的图象在点
(e为自然对数的底数)处取得极值-1.
(1)求实数
的值;
(2)若不等式
对任意
恒成立,求
的取值范围.
已知椭圆C:
的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点
的直线
与椭圆C相交于A、B两点,若
,求直线
的方程.
某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用
表示,且
(其中
),又知建5座球场时,每平方米的平均建筑费用为400元.
(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?
(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?
在
中,
分别是角A,B,C的对边,且满足
.
(1)求角B的大小;
(2)若
最大边的边长为
,且
,求最小边长.