已知椭圆C:
的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点
的直线
与椭圆C相交于A、B两点,若
,求直线
的方程.
某车队2008年初以98万元购进一辆大客车,并投入营运,第一年需支出各种费用12万元,从第二年起每年支出费用均比上一年增加4万元,该车投入营运后每年的票款收入为50万元,设营运
年该车的盈利总额为
万元.
(1)写出
关于
的函数关系式;(2)从哪一年开始,该汽车开始获利;(3)有两种方案处理该车:方案1——当盈利总额达最大值时,年底以20万元的价格卖掉该车;
方案2——当年均盈利额最大时,年底以40万元的价格卖掉该车.试问车队以哪种方案处理该车获利较大?
已知函数
,
(1)当
时,求
的最大值和最小值(2)若
在
上是单调增函数,且
,求
的取值范围.
已知函数
的定义域为A,指数函数
(
>0且
≠1)(
)的值域为B.(1)若
,求
;(2)若
=(
,2),求
的值.
.数列
的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.(Ⅰ)求数列
的通项公式;(Ⅱ)设数列
的前
项和为
,且
,求证:对任意实数
(
是常数,
=2.71828
)和任意正整数
,总有
2;(Ⅲ) 正数数列
中,
.求数列
中的最大项.
(本小题满分13分)已知点
是椭圆
上的一点,
,
是椭圆的两个焦点,且满足
.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)设点
,
是椭圆上的两点,直线
,
的倾斜角互补,试判断直线
的斜率是否为定值?并说明理由.