某车队2008年初以98万元购进一辆大客车,并投入营运,第一年需支出各种费用12万元,从第二年起每年支出费用均比上一年增加4万元,该车投入营运后每年的票款收入为50万元,设营运年该车的盈利总额为
万元.
(1)写出关于
的函数关系式; (2)从哪一年开始,该汽车开始获利; (3)有两种方案处理该车:方案1——当盈利总额达最大值时,年底以20万元的价格卖掉该车;
方案2——当年均盈利额最大时,年底以40万元的价格卖掉该车.试问车队以哪种方案处理该车获利较大?
已知函数.
(1)若在
上是增函数,求实数
的取值范围;
(2)若是
的极值点,求
在
上的最小值和最大值.
命题:关于
的不等式
,对一切
恒成立,命题
:函数
是增函数,若
为真,
为假,求实数
的取值范围.
(本小题满分13分)已知函数.
(1)若为
的极值点,求实数
的值;
(2)若在
上为增函数,求实数
的取值范围;
(3)当时,方程
有实根,求实数
的最大值.
(本小题满分13分)设椭圆的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
(本小题满分13分)为增强市民交通规范意识,我市面向全市征召劝导员志愿者,分布于各候车亭或十字路口处.现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示.
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;
(2)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加“规范摩的司机的交通意识”培训活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.
分组(单位:岁) |
频数 |
频率 |
[20,25) |
5 |
0.05 |
[25,30) |
① |
0.20 |
[30,35) |
35 |
② |
[35,40) |
30 |
0.30 |
[40,45] |
10 |
0.10 |
合计 |
100 |
1.00 |