(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点.(1)证明平面;(2)求与平面所成角的正弦值;(3)求二面角的余弦值.
已知函数, 其中. (1)当时,求曲线在点处的切线方程; (2)当时,求曲线的单调区间与极值.
已知函数,数列的项满足:,(1)试求 (2) 猜想数列的通项,并利用数学归纳法证明.
已知函数 (1) 若函数在上单调,求的值; (2)若函数在区间上的最大值是,求的取值范围.
设是虚数,是实数,且 (1) 求的实部的取值范围 (2)设,那么是否是纯虚数?并说明理由。
已知数列满足(I)求数列的通项公式; (II)若数列中,前项和为,且证明:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号