(本小题满分12分) 一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在(元)的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在
(元)的居民,剩余的数字表示月收入不在
(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,计算该社区3个居民中恰好有2个月收入在(元)的概率.
函数的定义域为
(a为实数),
(1)当时,求函数
的值域。
(2)若函数在定义域上是减函数,求a的取值范围
(3)求函数在
上的最大值及最小值。
某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算
若函数(
)在
上的最大值为23,求a的值.
已知tanα,是关于x的方程x2-kx+k2-3=0的两实根,且3π<α<
π,
求cos(3π+α)-sin(π+α)的值.
(1)已知角α的终边经过点P(4,-3),求2sinα+cosα的值;
(2)已知角α的终边经过点P(4a,-3a)(a≠0),求2sinα+cosα的值;