(本小题满分12分) 一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在(元)的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在
(元)的居民,剩余的数字表示月收入不在
(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,计算该社区3个居民中恰好有2个月收入在(元)的概率.
户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:
喜欢户外运动 |
不喜欢户外运动 |
合计 |
|
男性 |
5 |
||
女性 |
10 |
||
合计 |
50 |
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是.
(1)请将上面的列联表补充完整;(2)求该公司男、女员工各多少名;
(3)是否有的把握认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参考公式:,其中
.
已函数.
(1)作出函数的图像;
(2)若对任意,
恒成立,求实数
的取值范围.
已知函数,当
时,有极大值
.
(1)求的值;
(2)求函数的极小值.
已知函数.
(1)求函数在区间
上的最小值;
(2)设,其中
,判断方程
在区间
上的解的个数(其中
为无理数,约等于
且有
).
某同学在一次研究性学习中发现以下四个不等式都是正确的:;
;
;
.
请你观察这四个不等式:
(1)猜想出一个一般性的结论(用字母表示);
(2)证明你的结论.