丹东市某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
如图,在 中, 是边 上的点, , ,垂足分别为 , ,且 , .求证: .
在平面直角坐标系 中, 的半径为1.对于点 和线段 ,给出如下定义:若将线段 绕点 旋转可以得到 的弦 , 分别是 , 的对应点),则称线段 是 的以点 为中心的“关联线段”.
(1)如图,点 , , , , , , 的横、纵坐标都是整数.在线段 , , 中, 的以点 为中心的“关联线段”是 ;
(2) 是边长为1的等边三角形,点 ,其中 .若 是 的以点 为中心的“关联线段”,求 的值;
(3)在 中, , .若 是 的以点 为中心的“关联线段”,直接写出 的最小值和最大值,以及相应的 长.
如图,在 中, , , 为 的中点,点 在 上,以点 为中心,将线段 顺时针旋转 得到线段 ,连接 , .
(1)比较 与 的大小;用等式表示线段 , , 之间的数量关系,并证明;
(2)过点 作 的垂线,交 于点 ,用等式表示线段 与 的数量关系,并证明.
在平面直角坐标系 中,点 和点 在抛物线 上.
(1)若 , ,求该抛物线的对称轴;
(2)已知点 , , 在该抛物线上.若 ,比较 , , 的大小,并说明理由.
为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.
.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组: , , , ,
.甲城市邮政企业4月份收入的数据在 这一组的是:
10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8
.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:
平均数 |
中位数 |
|
甲城市 |
10.8 |
|
乙城市 |
11.0 |
11.5 |
根据以上信息,回答下列问题:
(1)写出表中 的值;
(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为 .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为 .比较 , 的大小,并说明理由;
(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).