已知直线与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于C.
(1)求直线BC的解析式;
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿C-B-A向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;
(3)在(2)的条件下,当t=4秒时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.
某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生.
(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?
(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.
如图,在△ABC中,∠ABC、∠ACB的平分线交于O点.
① 当∠A=300时,∠BOC=105°=;
② 当∠A=400时, ∠BOC=110°=
③ 当∠A=500时, ∠BOC=115°=
当∠A=n°(n为已知数)时,猜测∠BOC=,并用所学的三角形的有关知识说明理由.
小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案:
(1)小明是在n边形内取一点P,然后分别连结PA1、PA2、…、PAn(如图1);
(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).
请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.
若a、b、c是△ABC的三边,请化简│a-b-c│+│b-c-a│+│c-a-b│.
已知方程组和
的解相同,求代数式
的值。