(本题满分10分) 今年“五一”期间,小明准备攀登海拔高度为2000米的山峰。导游介绍山区气温会随着海拔高度的增加而下降,提醒大家上山要多带一件衣服,小明从网上查到该山区海拔和即时气温的部分数据表,数据如下:
海拔高度x(米) |
400 |
500 |
600 |
700 |
800 |
…… |
气温y(°C) |
29.2 |
28.6 |
28.0 |
27.4 |
26.8 |
…… |
(1)以海拔高度为x轴,根据上表提供的数据在下列直角坐标系中描点并连线;
(2)观察(1)中所画出的图象,猜想与之间函数关系,求出所猜想的函数关系表达式,并根据表中提供的数据验证你的猜想;
(3)如果气温低于200C就需要穿外套,请问小明需不需要携带外套上山?
如图,在△ABC中,∠B=32°,∠C=48°, 于点
,
平分交
于点
,
于点
,求
的度数
如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE
求证:AH=2BD
如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H试猜测线段AE和BD数量关系,并说明理由
如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠4
如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.