游客
题文

如图1,在菱形 ABCD 中, AB = 6 5 tan ABC = 2 ,点 E 从点 D 出发,以每秒1个单位长度的速度沿着射线 DA 的方向匀速运动,设运动时间为 t (秒 ) ,将线段 CE 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CF

(1)求证: BE = DF

(2)当 t =          秒时, DF 的长度有最小值,最小值等于            

(3)如图2,连接 BD EF BD EC EF 于点 P Q ,当 t 为何值时, ΔEPQ 是直角三角形?

(4)如图3,将线段 CD 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CG .在点 E 的运动过程中,当它的对应点 F 位于直线 AD 上方时,直接写出点 F 到直线 AD 的距离 y 关于时间 t 的函数表达式.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形 菱形的性质 全等三角形的判定与性质
登录免费查看答案和解析
相关试题

如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.

求证:∠A=∠D.

解不等式组

如图(1),直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式及顶点P的坐标;
(2)连结AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)动点M从B点开始沿BO边向点O以每秒2个单位的速度运动,动点N从点O开始沿OC边向点C以每秒1个单位的速度运动,当点M到达O点时,点N也随之停止运动.在整个运动过程中,求:线段MN的中点所经过的路程长.

如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.

(1)求△PEF的边长;
(2)若△PEF的边EF在射线BC上移动(点E的移动范围在B、C之间,不与B、C两点重合).设BE=x,PH=y.
①求y与x的函数关系式;
②连接BG,设△BEG面积为S,求S与x的函数关系式,判断x为何值时S最大,并求最大值S.

如图,一条直线与反比例函数的图象交于A(1,4),B(4,n)两点,与x轴交于点D,AC⊥x轴,垂足为C.
(1)求反比例函数的解析式及D点的坐标;
(2)点P是线段AD的中点,点E,F分别从C,D两点同时出发,以每秒1个单位的速度沿CA,DC运动,到点A,C时停止运动,设运动的时间为t(s).

①求证:PE=PF.
②若△PEF的面积为S,求S的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号