如图,一条直线与反比例函数的图象交于A(1,4),B(4,n)两点,与x轴交于点D,AC⊥x轴,垂足为C.
(1)求反比例函数的解析式及D点的坐标;
(2)点P是线段AD的中点,点E,F分别从C,D两点同时出发,以每秒1个单位的速度沿CA,DC运动,到点A,C时停止运动,设运动的时间为t(s).
①求证:PE=PF.
②若△PEF的面积为S,求S的最小值.
如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移8个格.
如图:已知直线m∥n,A、B直线n上两点C、P为直线m上的两点。
(1)请写出图中面积相等的各对三角形:___________________________________________;
(2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有__________与△ABC的面积相等。请说明理由。
已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P,求证∠P=
如图,直线EF交直线AB、CD于点M、N,∠EMB=∠END,MG平分∠EMB,NH平分∠END。试问:图中哪两条直线互相平行?为什么?
如图,已知,∥
,∠1+∠3=180º,请说明
∥
。