游客
题文

如图是教师每天在黑板上书写用的粉笔,请画出图示粉笔俯视图.

科目 数学   题型 解答题   难度 容易
知识点: 中心投影
登录免费查看答案和解析
相关试题

如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.

(1)直接写出直线AB的解析式;
(2)求点D的坐标;
(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.

已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA)、B(0,yB)、C(-1,yC)在该抛物线上.
(Ⅰ)当a=1,b=4,c=10时,①求顶点P的坐标;②求-的值;
(Ⅱ)当y0≥0恒成立时,求的最小值.

已知关于x的方程x2-(m+2)x+(2m-1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。

设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.
(1)反比例函数是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间[m,n]上的“闭函数”,求此函数的解析式;
(3)若二次函数是闭区间[a,b]上的“闭函数”,求实数a,b的值.

阅读理解:对于任意正实数a、b,∵()2≥0,∴a-2+b≥0,∴a+b≥2,只有当a=b时,等号成立.
结论:在a+b≥2(a、b均为正实数)中,若ab为定值p,则a+b≥2,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:
(1)若m>0,只有当m= 时,m+有最小值
若m>0,只有当m= 时,2m+有最小值 .
(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=(x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号