已知抛物线,当
时,
值为正,当
或
时,
值为负.
(1)求抛物线的解析式;
(2)若直线与抛物线交于点
和
,求直线的解析式.
(3)设平行于轴的直线
和
分别交线段
于
、
,交抛物线于
、
,
①求的取值范围;
②是否存在适当的值,使得四边形
是平行四边形?若存在,求出
值;若不存在,请说明理由.
如图,请根据图象所提供的信息解答下列问题:
(1)当x 时,kx+b≥mx-n;
(2)不等式kx+b<0的解集是 ;
(3)交点P的坐标(1,1)是一元二次方程组: 的解;
(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.
如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.
学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量 不少于乙种图书的数量,则共有几种购买方案?
请你说明:当n为自然数时,(n+7)2-(n-5)2能被24整除.