请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答:
习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°﹣45°=45°=∠EAF,
又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究
观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD.
类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
研究一个问题,常从特例入手,请同学们研究:如图13(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?
归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题: .
如图,BD是▱ABCD的对角线,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F.
(1)补全图形,并标上相应的字母;
(2)求证:AE=CF.
已知抛物线y=-x2+bx+c与直线y=-4x+m相交于第一象限不同的两点,A(5,n),B(e,f)
(1)若点B的坐标为(3,9),求此抛物线的解析式;
(2)将此抛物线平移,设平移后的抛物线为y=-x2+px+q,过点A与点(1,2),且m-q=25,在平移过程中,若抛物线y=-x2+bx+c向下平移了S(S>0)个单位长度,求S的取值范围.
已知是
的直径,点
在
上,点
在半径
上(不与点
,
重合).
(1)如图1,若,
,求
的度数.
(2)如图2,点在线段
上(不与
,
重合),
、
的延长线分别交
于点
、
,连接
,
,点
是
的延长线与
的交点,若
,
,
,
,求
的长.
如图,在平面直角坐标系中,已知点
,
,
,
,
,
,点
是四边形
内的一点,且
与
的面积相等,求
的值.
如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度(微克
毫升)用药后的时间
(小时)变化的图象(图象由线段
与部分双曲线
组成).并测得当
时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物需要多长时间达到最大浓度?