已知椭圆的左右焦点分别为
,
为半焦距,
(1)求椭圆离心率的取值范围;
(2)设椭圆的短半轴长为,以
为圆心,
为半径作圆
,圆
与
轴的右交点为
,过点
作倾斜角不为
直线
与椭圆相交于
两点,若
,求直线
被圆
截得的弦长
的取值范围。
给定椭圆C:(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为
,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.
已知{an}是等差数列,其前n项的和为Sn, {bn}是等比数列,且a1=b1=2,a4+b4=21,
S4+b4=30.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点.
(1)求证:MN∥平面AA1C1C;
(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2).
(1)求φ的值;
(2)若f()=
,-
<α<0,求sin(2α-
)的值.
已知函数.
(1)当时,求函数
的单调区间;
(2)当时,函数
图象上的点都在
,所表示的平面区域内,不等式
恒成立,求实数
的取值范围.