(本小题满分12分)某学校有男老师45名,女老师15名,按照分层抽样的方法组建了一个4人的学科攻关小组。
(1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数;
(2)经过一个月的学习、讨论,这个学科攻关小组决定选出2名老师做某项实验,方法是先从小组里选出1名老师做实验,该老师做完后,再从小组内剩下的老师中选1名做实验,求选出的2名老师中恰有1名女老师的概率.
(本小题满分14分)已知是等差数列,
,
.
(1)求数列的通项公式;
(2)对一切正整数,设
,求数列
的前
项和
.
(本小题满分12分)已知函数,
.
(1)求的最小正周期
和最大值
;
(2)若,求
的值.
(本小题满分15分)已知函数,
(1)若a=1,试判断并用定义证明函数f(x)在[1,4]上的单调性;
(2)当时,求函数f(x)的最大值的表达式M(a);
(3)是否存在实数a,使得f(x)=3有且仅有3个不等实根,且它们成等差数列,若存在,求出所有a的值,若不存在,说明理由.
椭圆C:的离心率为
,P(m,0)为C的长轴上的一个动点,过P点斜率为
的直线l交C于A、B两点.当m=0时,
.
(1)求C的方程;
(2)证明:为定值.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:平面BCE⊥平面CDE;
(2)求二面角B-EF-D的余弦值.