(本小题满分12分)为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各9件样品,测量产品中某种元素的含量(单位:毫克),如图是测量数据的茎叶图,但是乙厂记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示,规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)若甲、乙两厂产品中该种元素含量的平均值相同,求的值;
(2)求乙厂该种元素含量的平均值超过甲厂平均值的概率;
(3)当时,利用简单随机抽样的方法,分别在甲、乙两厂该种元素含量超过
(毫克)的数据中个抽取一个做代表,设抽取的两个数据中超过
(毫克)的个数最多不超过
个的概率.
已知p:|3x﹣4|>2,q:>0,求¬p和¬q对应的x的值的集合.
判断下列命题的真假.
(1)∀x∈R,|x|>0;
(2)∀a∈R,函数y=logax是单调函数;
(3)∀x∈R,x2>﹣1;
(4)∃∈{向量},使
=0;
(5)∃x>0,y>0,使x2+y2=0.
判断下列命题是全称命题还是存在性命题,并写出它们的否定:
(1)p:对任意的x∈R,x2+x+1=0都成立;
(2)p:∃x∈R,x2+2x+5>0.
已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.
数学家斯摩林根据莎士比亚的名剧《威尼斯商人》中的情节编了一道题:女主角鲍西娅对求婚者说:“这里有三只盒子:金盒、银盒和铅盒,每只盒子的铭牌上各写有一句话.三句话中,只有一句是真话.谁能猜中我的肖像放在哪一只盒子里,谁就能做我的丈夫.”盒子上的话如图所示,求婚者猜中了,你知道他是怎样猜中的吗?