(本小题满分12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
天数t(天) |
3 |
4 |
5 |
6 |
7 |
繁殖个数y(千个) |
2.5 |
3 |
4 |
4.5 |
6 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
设函数
(Ⅰ)求函数的极大值;
(Ⅱ)若时,恒有
成立(其中
是函数
的导函数),试确定实数
的取值范围.
已知椭圆过点
,且离心率为
.
(1)求椭圆的方程;
(2)为椭圆
的左右顶点,直线
与
轴交于点
,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:当点
在椭圆
上运动时,
恒为定值.
如图,在三棱柱中,
,顶点
在底面
上的射影恰为点
,且
.
(Ⅰ)证明:平面平面
;
(Ⅱ)求棱与
所成的角的大小;
(Ⅲ)若点为
的中点,并求出二面角
的平面角的余弦值.
已知等比数列的公比
,
是
和
的一个等比中项,
和
的等差中项为
,若数列
满足
(
).
(Ⅰ)求数列的通项公式;(Ⅱ)求数列
的前
项和
.
已知向量,
.
(I)若,求
的值;
(II)在中,角
的对边分别是
,且满足
,求函数
的取值范围