【原创】(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
|
接受挑战 |
不接受挑战 |
合计 |
男性 |
45 |
15 |
60 |
女性 |
25 |
15 |
40 |
合计 |
70 |
30 |
100 |
根据表中数据,能否在犯错误的概率不超过的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
(本小题满分14分)
已知函数对于任意
(
),都有式子
成立(其中
为常数).
(Ⅰ)求函数的解析式;
(Ⅱ)利用函数构造一个数列,方法如下:
对于给定的定义域中的,令
,
,…,
,…
在上述构造过程中,如果(
=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果
不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;
(ⅱ)是否存在一个实数,使得取定义域中的任一值作为
,都可用上述方法构造出一个无穷数列
?若存在,求出
的值;若不存在,请说明理由;
(ⅲ)当时,若
,求数列
的通项公式.
如图所示,已知圆,定点
,
为圆上一动点,点
在
上,点
在
上,且满足
,
,点
的轨迹为曲线
.
(Ⅰ) 求曲线的方程;
(Ⅱ) 若点在曲线
上,线段
的垂直平分线为直线
,且
成等差数列,求
的值,并证明直线
过定点;
(Ⅲ)若过定点(0,2)的直线交曲线
于不同的两点
、
(点
在点
、
之间),且满足
,求
的取值范围.
(本小题满分14分)
如图,三棱锥中,
,
.
(Ⅰ)求证:平面
;
(Ⅱ)若
为线段
上的点,设
,问
为何值时能使
直线平面
;
(Ⅲ)求二面角的大小.
(本小题满分12分)
已知函数,在函数
图像上一点
处切线的斜率为3.
(Ⅰ)若函数在
时有极值,求
的解析式;
(Ⅱ)若函数在区间
,
上单调递增,求
的取值范围.
袋中装有大小、质地相同的8个小球,其中红色小球4个,蓝色和白色小球各 2个.某学生从袋中每次随机地摸出一个小球,记下颜色后放回.规定每次摸出红色小球记2分,摸出蓝色小球记1分,摸出白色小球记0分.
(Ⅰ)求该生在4次摸球中恰有3次摸出红色小球的概率;
(Ⅱ)求该生两次摸球后恰好得2分的概率;
(Ⅲ)求该生两次摸球后得分的数学期望.