【原创】(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
|
接受挑战 |
不接受挑战 |
合计 |
男性 |
45 |
15 |
60 |
女性 |
25 |
15 |
40 |
合计 |
70 |
30 |
100 |
根据表中数据,能否在犯错误的概率不超过的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
已知A、B、C为三个锐角,且A+B+C=π.若向量=(2-2sinA,cosA+sinA)与向量=(cosA-sinA,1+sinA)是共线向量.(Ⅰ)求角A;(Ⅱ)求函数y=2sin2B+cos的最大值.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.
(Ⅰ)若△ABC的面积S=,求b+c的值.(Ⅱ)求b+c的取值范围.
已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx),(Ⅰ)求证:向量与向量不可能平行;(Ⅱ)若f(x)=·,且x∈[-,]时,求函数f(x)的最大值及最小值.
△ABC的角A、B、C的对边分别为a、b、c,=(2b-c,a),=(cosA,-cosC),且⊥.(Ⅰ)求角A的大小;(Ⅱ)当y=2sin2B+sin(2B+)取最大值时,求角的大小.
.已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cosα,3sinα).(Ⅰ)若α∈(-π,0),且||=||,求角α的大小;(Ⅱ)若⊥,求的值.