(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
中国航母“辽宁舰”是中国第一艘航母,“辽宁”号以4台蒸汽轮机为动力,为保证航母的动力安全性,科学家对蒸汽轮机进行了170余项技术改进,增加了某项新技术,该项新技术要进入试用阶段前必须对其中的三项不同指标甲、乙、丙进行通过量化检测。假如该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为、
、
。指标甲、乙、丙合格分别记为4分、2分、4分;若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。
(I)求该项技术量化得分不低于8分的概率;
(II)记该项新技术的三个指标中被检测合格的指标个数为随机变量X,求X的分布列与数学期望。
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为
,PB与底面ABC成60°角,求二面角B―PC―A的大小。
集合,
,若命题
,命题
,且
是
必要不充分条件,求实数
的取值范围。
已知圆A过点,且与圆B:
关于直线
对称.
(1)求圆A的方程;
(2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。
(3)过平面上一点向圆A和圆B各引一条切线,切点分别为C、D,设
,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.
(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.
(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C−BM−D的大小.