【原创】已知均为正数,证明:
(本小题满分14分)
已知各项均不相等的等差数列的前四项和为14,且
恰为等比数列
的前三项。
(1)分别求数列的前n项和
(2)记为数列的前n项和为
,设
,求证:
如图,三棱锥P—ABC中,平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD
平面PAB。
(1)求证:平面PCB;
(2)求二面角C—PA—B的余弦值。
已知函数的最小正周期为
(1)求的单调递增区间;
(2)在中,a、b、c分别是角A、B、C的对边,若
的面积为
,求a的值。
已知:函数.(其中e为自然对数的底数,e=2.71828…〉.
(1) 当时,求函数
的图
象在点
处的切线方程;
(2) 当时,试求函数
的极值;
(3)若,则当
时,函数
的图象是否总在不等式
所表示的平面区域内,请写出判
断过程.
已知椭圆的右焦点为
且
,设短轴的一个端点为
,原点
到直线
的距离为
,过原点和
轴不重合的直线与椭圆
相交于
两点,且
.
(1) 求椭圆的方程;
(2) 是否存在过点的直线
与椭圆
相交于不同的两点
且使得
成立?若存在,试求出直线
的方程;若不存在,请说明理由.