(本小题满分14分)已知椭圆,其中
为左、右焦点,O为坐标原点.直线l与椭圆交于
两个不同点.当直线l过椭圆C右焦点F2且倾斜角为
时,原点O到直线l的距离为
.又椭圆上的点到焦点F2的最近距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积
的最大值;
(Ⅲ)若抛物线为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.
设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;
(3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。
(1)求证:B1C1⊥平面ABB1A1;
(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由。
如图,从边长为2a的正方形铁皮的四个角各截去一个边长为x的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度x与底面正方形的边长的比不超过常数t,问:x取何值时,长方体的容积V有最大值?
在锐角三角形ABC中,∠A,∠B,∠C的对边分别为a,b,c,且b2+c2=bc+a2
(1)求∠A;
(2)若a=,求b2+c2的取值范围。
(本题满分16分)设函数R 的最小值为-a,
两个实根为
、
.
(1)求的值;
(2)若关于的
不等式
解集
为
,函数
在
上不存在最小值,求
的取值范围;
(3)若,求b的取值范围。